Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Fish Shellfish Immunol ; 127: 437-445, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779811

ABSTRACT

Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.


Subject(s)
Brachyura/virology , Reoviridae/pathogenicity , Amino Acids/metabolism , Animals , Apoptosis , Aquaculture , Brachyura/enzymology , Brachyura/immunology , Brachyura/metabolism , Fatty Acids, Unsaturated/biosynthesis , Gene Expression Profiling , Lipid Metabolism , Oxidative Stress , Phagocytosis , Reoviridae/physiology
2.
J Virol ; 96(6): e0202921, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107378

ABSTRACT

p53, the guardian of the genome, is a short-lived protein that is tightly controlled at low levels by constant ubiquitination and proteasomal degradation in higher organisms. p53 stabilization and activation are early crucial events to cope with external stimuli in cells. However, the role of p53 ubiquitination and its relevant molecular mechanisms have not been addressed in invertebrates. In this study, our findings revealed that both HUWE1 (HECT, UBA, and WWE domain-containing E3 ubiquitin-protein ligase 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) could serve as E3 ubiquitin ligases for p53 in mud crabs (Scylla paramamosain). Moreover, the expression of HUWE1 and TRAF6 was significantly downregulated during white spot syndrome virus (WSSV) infection, and therefore the ubiquitination of p53 was interrupted, leading to the activation of apoptosis and reactive oxygen species (ROS) signals through p53 accumulation, which eventually suppressed viral invasion in the mud crabs. To the best of our knowledge, this is the first study to reveal the p53 ubiquitination simultaneously induced by two E3 ligases in arthropods, which provides a novel molecular mechanism of invertebrates for resistance to viral infection. IMPORTANCE p53, which is a well-known tumor suppressor that has been widely studied in higher animals, has been reported to be tightly controlled at low levels by ubiquitin-dependent proteasomal degradation. However, recent p53 ubiquitination-relevant research mainly involved an individual E3 ubiquitin ligase, but not whether there exist other mechanisms that need to be explored. The results of this study show that HUWE1 and TRAF6 could serve as p53 E3 ubiquitin ligases and synchronously mediate p53 ubiquitination in mud crabs (Scylla paramamosain), which confirmed the diversity of the p53 ubiquitination regulatory pathway. In addition, the effects of p53 ubiquitination are mainly focused on tumorigenesis, but a few are focused on the host immune defense in invertebrates. Our findings reveal that p53 ubiquitination could affect ROS and apoptosis signals to cope with WSSV infection in mud crabs, which is the first clarification of the immunologic functions and mechanisms of p53 ubiquitination in invertebrates.


Subject(s)
Brachyura , TNF Receptor-Associated Factor 6 , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Virus Diseases , White spot syndrome virus 1 , Animals , Brachyura/virology , Reactive Oxygen Species/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Diseases/veterinary
3.
Mol Immunol ; 140: 158-166, 2021 12.
Article in English | MEDLINE | ID: mdl-34715578

ABSTRACT

TIA-1 (T cell restricted intracellular antigen-1) is a kind of RNA-binding protein which serves as the downstream of CED-9 (a BCL2 homolog) and induces apoptosis under stress conditions. So far, the function of apoptosis mediated by TIA-1 has been extensively studied in higher animals, and apoptosis happens to be related to biological immune defense. However, the involvement of TIA-1 in the study of immune function during viral infection has not been clearly studied, especially in marine invertebrates. In the study, SpTIA-1 in mud crab (Scylla paramamosain) was specifically identified. The Open Reading Frame (ORF) of SpTIA-1 was consisted of 1116 nucleotide bases and encoded 372 amino acids. Besides, the results showed that the expression of SpTIA-1 was obviously up-regulated during WSSV (White Spot Syndrome Virus) infection in hemocytes of mud crab. Furthermore, through RNAi approach, we found that SpTIA-1 could activate Caspase-3 signaling and increase ROS levels to reduce mitochondrial membrane potential, resulting in the increase of apoptosis rate in hemocytes, which eventually suppressed WSSV multiplication in mud crab. The current study therefore improves the knowledge of antiviral immunity in mud crab and provides new insights into the innate immunity of marine crustaceans.


Subject(s)
Apoptosis , Brachyura/metabolism , Brachyura/virology , RNA-Binding Proteins/metabolism , White spot syndrome virus 1/physiology , Amino Acid Sequence , Animals , Antibodies/metabolism , Brachyura/immunology , Caspase 3/metabolism , Immunity , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Protein Domains , RNA-Binding Proteins/chemistry , Reactive Oxygen Species/metabolism , Tissue Distribution
4.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: mdl-34372583

ABSTRACT

The present study was intended to screen the wild crustaceans for co-infection with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in Andaman and Nicobar Archipelago, India. We screened a total of 607 shrimp and 110 crab samples using a specific polymerase chain reaction, and out of them, 82 shrimps (13.5%) and 5 (4.5%) crabs were found positive for co-infection of IHHNV and WSSV. A higher rate of co-infection was observed in Penaeus monodon and Scylla serrata than other shrimp and crab species. The nucleotide sequences of IHHNV and WSSV obtained from crab in this present study exhibited very high sequence identity with their counterparts retrieved from various countries. Histopathological analysis of the infected shrimp gill sections further confirmed the eosinophilic intra-nuclear cowdry type A inclusion bodies and basophilic intra-nuclear inclusion bodies characteristics of IHHNV and WSSV infections, respectively. The present study serves as the first report on co-infection of WSSV and IHHNV in Andaman and Nicobar Archipelago, India and accentuates the critical need for continuous monitoring of wild crustaceans and appropriate biosecurity measures for brackishwater aquaculture.


Subject(s)
Brachyura/virology , Coinfection/epidemiology , Penaeidae/virology , Animals , Animals, Wild/virology , Aquaculture/methods , Densovirinae/genetics , Densovirinae/pathogenicity , India , Polymerase Chain Reaction/methods , White spot syndrome virus 1/genetics , White spot syndrome virus 1/pathogenicity
5.
Dev Comp Immunol ; 116: 103925, 2021 03.
Article in English | MEDLINE | ID: mdl-33217412

ABSTRACT

Crustaceans, including crab and shrimp, generally lack lymphocytes or adaptive immunity, and they rely solely on innate immunity for pathogen defense. The white spot syndrome virus (WSSV) causes the most prevalent viral disease in penaeid shrimps, which are widely cultured species in coastal waters worldwide. Numerous studies have elucidated the role of the immune system in protecting shrimps from WSSV infection for the development of safe and effective defensive strategies against WSSV. Although WSSV has a wide host range, it appears to exhibit high pathogenicity and virulence in only penaeid shrimps. Crabs are interesting models for studying immune responses after WSSV infection. Therefore, we reviewed recent information on the innate immune responses of crabs to WSSV and mainly focused on the antiviral functions of exosome-mediated apoptosis and alternatively spliced Down syndrome cell adhesion molecule. Our review may provide novel insights into antiviral management for crustaceans, especially penaeid shrimps.


Subject(s)
Brachyura/immunology , Cell Adhesion Molecules/immunology , Exosomes/immunology , Virus Diseases/immunology , Virus Diseases/veterinary , Alternative Splicing , Animals , Apoptosis/immunology , Brachyura/virology , Cell Adhesion Molecules/genetics , Immunity, Innate , Protein Isoforms , Virus Diseases/virology , White spot syndrome virus 1/physiology
6.
Mar Biotechnol (NY) ; 22(5): 661-672, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32914203

ABSTRACT

Mud crab Scylla paramamosain (S. paramamosain) is an economically important marine crab species around the world. White spot syndrome virus (WSSV) and Aeromonas hydrophila (AH) are pathogens during mud crab mariculture. It has been reported that gut microbiota possessed a great impact on the host development, nutrition, immunity, and disease resistance. However, little information was known about the impacts of WSSV or AH infection on the structure, composition, and function of the gut microbiotain of mud crabs. In this study, the gut microbiota of mud crabs infected with A. hydrophila and WSSV were characterized. The results showed that the composition and bacteria correlation of the gut microbiota were significantly decreased. During A. hydrophila infection, the pathogens played a major regulatory role in host. While in the mud crabs infected with WSSV, many beneficial strains had a great impact on the host expect for the pathogens. Therefore, our study revealed the effect of pathogens infection on gut microbiota of mud crabs and clarified the difference between viral infection and bacterial infection.


Subject(s)
Brachyura/microbiology , DNA Virus Infections/veterinary , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections/veterinary , Aeromonas hydrophila/physiology , Animals , Brachyura/virology , White spot syndrome virus 1/physiology
7.
Fish Shellfish Immunol ; 105: 1-7, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32619629

ABSTRACT

Till date numerous microRNAs (miRNAs) have been discovered from various organisms, including fish, shellfish and crustaceans. The miRNAs are known to regulate immune functions in crustaceans, but little is known about the role of miRNAs against viral infection in crab. We performed small RNA sequencing to characterize the differentially expressed miRNAs in WSSV infected Scylla paramamosain, in comparison to that in uninfected crab, at 2 h and 12 h post infection. In total, 24 host miRNAs were up-regulated and 25 host miRNAs were down-regulated in response to WSSV infection at 2 h post infection. And 27 host miRNAs were up-regulated and 30 host miRNAs were down-regulated in response to WSSV infection at 12 h post infection. Further, the gene ontology analysis revealed that many signaling pathways were mediated by these miRNAs. The integral component of membrane is the most important biological process and endocytosis pathway is the most important pathway, which indicates that endocytosis is very important for WSSV infection. This study is one important attempt at characterizing crab miRNAs that response to WSSV infection, and will help unravel the miRNA pathways involved in antiviral immunity of crab.


Subject(s)
Brachyura/genetics , Gene Expression , MicroRNAs/genetics , White spot syndrome virus 1/physiology , Animals , Brachyura/metabolism , Brachyura/virology , MicroRNAs/metabolism
8.
Virulence ; 11(1): 849-862, 2020 12.
Article in English | MEDLINE | ID: mdl-32597292

ABSTRACT

Programmed cell death 6 (PDCD6) is a well-known apoptosis regulator that is involved in the immunity of mammals. However, the effects of miRNA-mediated regulation of PDCD6 expression on apoptosis and virus infection in organisms, especially in marine invertebrates, have not been extensively explored. In this study, PDCD6 of mud crab (Scylla paramamosain) (Sp-PDCD6) was characterized. The results showed that Sp-PDCD6 contains five EF-hands domains and could suppress virus infection via apoptosis promotion. It also presented that Sp-PDCD6 was directly targeted by miR-9875 in vitro and in vivo, miR-9875 served as a positive regulator during the virus invasion. The findings indicated that the miR-9875-PDCD6 pathway possessed fundamental effects on the immune response to virus infection in mud crab. Therefore, our research provided a novel insight into the roles of both miR-9875 and PDCD6 in the regulation of apoptosis and virus defense in mud crab.


Subject(s)
Arthropod Proteins/immunology , Brachyura/immunology , Brachyura/virology , Immunity, Innate , MicroRNAs/immunology , Virus Diseases/veterinary , Animals , Arthropod Proteins/genetics , Brachyura/genetics , Gene Expression Profiling , Gene Expression Regulation , MicroRNAs/genetics , Phylogeny , Virus Diseases/genetics , Virus Diseases/immunology
9.
PLoS Pathog ; 16(5): e1008366, 2020 05.
Article in English | MEDLINE | ID: mdl-32433716

ABSTRACT

MicroRNAs are regulatory molecules that can be packaged into exosomes to modulate cellular response of recipients. While the role of exosomes during viral infection is beginning to be appreciated, the involvement of exosomal miRNAs in immunoregulation in invertebrates has not been addressed. Here, we observed that exosomes released from WSSV-injected mud crabs could suppress viral replication by inducing apoptosis of hemocytes. Besides, miR-137 and miR-7847 were found to be less packaged in mud crab exosomes during viral infection, with both miR-137 and miR-7847 shown to negatively regulate apoptosis by targeting the apoptosis-inducing factor (AIF). Our data also revealed that AIF translocated to the nucleus to induce DNA fragmentation, and could competitively bind to HSP70 to disintegrate the HSP70-Bax (Bcl-2-associated X protein) complex, thereby activating the mitochondria apoptosis pathway by freeing Bax. The present finding therefore provides a novel mechanism that underlies the crosstalk between exosomal miRNAs and apoptosis pathway in innate immune response in invertebrates.


Subject(s)
Apoptosis/genetics , Brachyura/genetics , Exosomes/genetics , Animals , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Brachyura/metabolism , Brachyura/virology , Decapoda/genetics , Decapoda/metabolism , Decapoda/virology , Exosomes/metabolism , Hemocytes/immunology , Hemocytes/metabolism , Immunity, Innate , Infections , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria , Virus Replication/genetics , White spot syndrome virus 1/metabolism , White spot syndrome virus 1/pathogenicity
10.
Sci Rep ; 10(1): 5221, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251308

ABSTRACT

Viruses are the most abundant biological entities in marine environments, however, despite its potential ecological implications, little is known about virus removal by ambient non-host organisms. Here, we examined the effects of a variety of non-host organisms on the removal of viruses. The marine algal virus PgV-07T (infective to Phaeocystis globosa) can be discriminated from bacteriophages using flow cytometry, facilitating its use as a representative model system. Of all the non-host organisms tested, anemones, polychaete larvae, sea squirts, crabs, cockles, oysters and sponges significantly reduced viral abundance. The latter four species reduced viral abundance the most, by 90, 43, 12 and 98% over 24 h, respectively. Breadcrumb sponges instantly removed viruses at high rates (176 mL h-1 g tissue dry wt-1) which continued over an extended period of time. The variety of non-host organisms capable of reducing viral abundance highlights that viral loss by ambient organisms is an overlooked avenue of viral ecology. Moreover, our finding that temperate sponges have the huge potential for constant and effective removal of viruses from the water column demonstrates that natural viral loss has, thus far, been underestimated.


Subject(s)
Aquatic Organisms/virology , Phycodnaviridae/pathogenicity , Water Microbiology , Animals , Brachyura/virology , Copepoda/virology , Host Specificity , Mytilus edulis/virology , Ostreidae/virology , Phycodnaviridae/physiology , Porifera/virology , Sea Anemones/virology
11.
Fish Shellfish Immunol ; 100: 427-435, 2020 May.
Article in English | MEDLINE | ID: mdl-32147373

ABSTRACT

microRNAs (miRNAs) are known to regulate various immune functions by silencing the target genes in both vertebrates and invertebrates. However, in mud crab Scylla paramamosain, the role of miRNAs during the response to virus invasion remains unclear. To investigate the roles of miRNAs in S. paramamosain during virus infection, the mud crab was challenged with white spot syndrome virus (WSSV) and then subjected to the transcriptional analysis at different conditions. The results of high-throughput sequencing revealed that 940,379 and 1,306,023 high-quality mappable reads were detected in the hemocyte of normal and WSSV-infected mud crabs, respectively. Besides, the total number of 261 unique miRNAs were identified. Among them, 131 miRNAs were specifically expressed in the hemocytes of normal mud crabs, 46 miRNAs were specifically transcribed in those of WSSV-infected individuals, the other 84 miRNAs were expressed in both normal and WSSV-infected individuals. Furthermore, a number of 152 (89 down-regulated and 63 up-regulated) miRNAs were found to be differentially expressed in the WSSV-infected hemocytes, normalized to the controls. The identified miRNAs were subjected to GO analysis and target gene prediction and the results suggested that the differentially regulated miRNAs were mainly correlated with the changes of the immune responses of the hemocytes, including phagocytosis, melanism, and apoptosis as well. Taken together, the results demonstrated that the expressed miRNAs during the virus infection were mainly involved in the regulation of immunological pathways in mud crabs. Our findings not only enrich the understanding of the functions of miRNAs in the innate immune system but also provide some novel potential targets for the prevention of WSSV infection in crustaceans.


Subject(s)
Brachyura/genetics , Brachyura/virology , DNA Virus Infections/veterinary , MicroRNAs/genetics , Animals , Brachyura/immunology , Computational Biology , DNA Virus Infections/immunology , Gene Expression Profiling , Hemocytes/immunology , Hemocytes/virology , High-Throughput Nucleotide Sequencing , Immunity, Innate/genetics , Phagocytosis , White spot syndrome virus 1
12.
Fish Shellfish Immunol ; 98: 236-244, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31953197

ABSTRACT

Astakine is a crucial factor in the proliferation and differentiation of hematopoietic stem cells and is directly involved in hematopoiesis in crustaceans. To assess the role of Astakine in the innate immune system of Scylla paramamosain, the immune responses in healthy and Astakine-inhibited S. paramamosain were investigated in the present study. The RNA transcripts of Astakine were widely distributed in all examined tissues, with significantly higher levels of expression in hemocytes of both healthy and challenged S. paramamosain with Vibrio alginolyticus and WSSV. When Astakine was knocked down by RNA interference technology, immune-related genes, including Janus kinase, prophenoloxidase, hemocyanin, ß-actin, myosin II essential light chain-like protein, signal transducer and activator of transcription, Relish, and C-type-lectin, were significantly down-regulated in hemocytes. The levels of phenoloxidaseactivity (PO), total hemocyte counts (THC) and hemocyte proliferation decreased significantly in hemocytes of Astakine-dsRNA treated S. paramamosain. After being challenged with V. alginolyticus and WSSV, the THC decreased significantly and the levels of hemocyte apoptosis increased significantly in Astakine-dsRNA treated S. paramamosain in comparison with those in infected groups without Astakine-dsRNA treatment. After being challenged with WSSV, the WSSV copies were significantly lower in Astakine-dsRNA treated groups than those in the WSSV infection group, which suggested that knockdown of Astakine was not conductive to WSSV replication and this might be associated with the decreasing THC. The results of survival analysis showed that the survival rate of V. alginolyticus or WSSV infected S. paramamosain decreased significantly following Astakine knockdown. These results suggested that RNA interference of Astakine might weaken the resistance of S. paramamosain to V. alginolyticus or WSSV infection. The weaken resistivity after knockdown Astakine might be related to the changes of important immune-related gene expression, THC, PO activity, proliferation and apoptosis of hemocytes.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/microbiology , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism , Vibrio alginolyticus/physiology , White spot syndrome virus 1/physiology , Animals , Apoptosis , Arthropod Proteins/genetics , Brachyura/immunology , Brachyura/virology , Cell Proliferation , Disease Resistance/genetics , Gene Expression Regulation/immunology , Hemocytes/metabolism , Hemocytes/pathology , Immunity, Humoral , Survival Rate , Tissue Distribution , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics , Virus Replication
13.
mBio ; 11(1)2020 01 14.
Article in English | MEDLINE | ID: mdl-31937645

ABSTRACT

Panulirus argus virus 1 (PaV1) is the only known virus infecting the Caribbean spiny lobster (Panulirus argus) from the Caribbean Sea. Recently, related viruses, Dikerogammarus haemobaphes virus 1 (DhV1) and Carcinus maenas virus 1 (CmV1), have been detected in the demon shrimp (Dikerogammarus haemobaphes) and the European shore crab (Carcinus maenas), respectively, from sites in the United Kingdom. The virion morphology of these crustacean viruses is similar to that of iridoviruses. However, unlike iridoviruses and other nucleocytoplasmic large DNA viruses (NCLDVs), these viruses complete their morphogenesis in the host cell nucleus rather than in the cytoplasm. To date, these crustacean viruses have remained unclassified due to a lack of genomic data. Using an Illumina MiSeq sequencer, we sequenced the complete genomes of PaV1, CmV1, and DhV1. Comparative genome analysis shows that these crustacean virus genomes encode the 10 hallmark proteins previously described for the NCLDVs of eukaryotes, strongly suggesting that they are members of this group. With a size range of 70 to 74 kb, these are the smallest NCLDV genomes identified to date. Extensive gene loss, divergence of gene sequences, and the accumulation of low-complexity sequences reflect the extreme degradation of the genomes of these "minimal" NCLDVs rather than any direct relationship with the NCLDV ancestor. Phylogenomic analysis supports the classification of these crustacean viruses as a distinct family, "Mininucleoviridae," within the pitho-irido-Marseille branch of the NCLDVs.IMPORTANCE Recent genomic and metagenomic studies have led to a dramatic expansion of the known diversity of nucleocytoplasmic large DNA viruses (NCLDVs) of eukaryotes, which include giant viruses of protists and important pathogens of vertebrates, such as poxviruses. However, the characterization of viruses from nonmodel hosts still lags behind. We sequenced the complete genomes of three viruses infecting crustaceans, the Caribbean spiny lobster, demon shrimp, and European shore crab. These viruses have the smallest genomes among the known NCLDVs, with losses of many core genes, some of which are shared with iridoviruses. The deterioration of the transcription apparatus is compatible with microscopic and ultrastructural observations indicating that these viruses replicate in the nucleus of infected cells rather than in the cytoplasm. Phylogenomic analysis indicates that these viruses are sufficiently distinct from all other NCLDVs to justify the creation of a separate family, for which we propose the name "Mininucleoviridae" (i.e., small viruses reproducing in the cell nucleus).


Subject(s)
Crustacea/virology , DNA Viruses/classification , Genome, Viral , Phylogeny , Animals , Brachyura/virology , DNA Viruses/isolation & purification , DNA Viruses/pathogenicity , Ecosystem , Evolution, Molecular , Genomics , Oceans and Seas , Palinuridae/virology , Penaeidae/virology , United Kingdom
14.
Fish Shellfish Immunol ; 98: 522-533, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31911290

ABSTRACT

Troponin C (TnC) is one member of the EF-hand superfamily. In many species, this gene had been identified and related functions had been elucidated. The TnC gene was still blank in the Scylla paramamosain. We obtained the TnC gene for the first time in the S. paramamosain. And we systematically analyzed the possible role of this gene in the innate immunity of S. paramamosain while infected with white spot syndrome virus (WSSV) or Vibrio alginolyticus. The full-length 1427 bp sequence of TnC contains a 453 bp open reading frame (ORF) for encoding a 151 amino acid protein. Detection of tissue specificity of gene expression showed that the TnC was primarily expressed in muscle tissue. The expression of TnC was successfully inhibited by RNA interference technology, and several immune genes were affected. The activity of phenoloxidase and superoxide dismutase increased, and the total hemocytes counts increased after RNAi of TnC. It was found that after infection with V. alginolyticus and WSSV, the expression of TnC in hemocytes decreased. Infected with V. alginolyticus and WSSV, the cumulative mortality and apoptotic rate of hemocytes increased after silencing the TnC gene. Our results indicate that TnC takes participate in the innate immunity of S. paramamosain and may plays a different role in the antiviral and antibacterial immune response.


Subject(s)
Brachyura/microbiology , Troponin C/metabolism , Vibrio alginolyticus/physiology , White spot syndrome virus 1/physiology , Amino Acid Sequence , Animals , Base Sequence , Brachyura/metabolism , Brachyura/virology , Gene Expression Regulation/immunology , Host-Pathogen Interactions , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Distribution , Troponin C/genetics
15.
Dev Comp Immunol ; 102: 103469, 2020 01.
Article in English | MEDLINE | ID: mdl-31430487

ABSTRACT

The innate immune system is the first line of defense protecting the hosts against invading pathogens. Mud crab (Scylla paramamosain) is widely distributed in China and Indo-west Pacific countries, which develops a very complicated innate immune system against pathogen invasions. Innate immunity involves the humoral and cellular responses that are linked to the pattern recognition receptors (PRRs). PRRs initially recognize the infection and trigger the activation of signaling cascades, leading to transcriptional regulation of inflammatory mediators that function in pathogenic control and clearance. In mud crab S. paramamosain, the Toll/Toll-like receptors, lipopolysaccharide and ß-1,3-glucan binding proteins, C-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified as receptor families responsible for the recognition of bacteria, fungi, and viruses, and are important components in the innate immune system. In this review, we summarize the literature on the current knowledge and the roles of PRRs in the immune defenses of mud crab, which in an effort to provide much information for further researches.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/immunology , Immunity, Innate , Receptors, Pattern Recognition/metabolism , Animals , Arthropod Proteins/genetics , Brachyura/microbiology , Brachyura/virology , Carrier Proteins/metabolism , Cell Adhesion Molecules/metabolism , Gene Expression Regulation/immunology , Lectins/metabolism , Lectins, C-Type/metabolism , Receptors, Scavenger/metabolism , Signal Transduction/immunology , Toll-Like Receptors/metabolism
16.
Acta Virol ; 63(4): 433-438, 2019.
Article in English | MEDLINE | ID: mdl-31802686

ABSTRACT

The freshwater Chinese mitten crab (Eriocheir sinensis), an indigenous crustacean in China, has been cultured for more than 30 years. It was reported that the bunya-like virus from Eriocheir sinensis (EsBV) was associated with the tremor disease (TD), which causes high mortality and has a serious impact on production. In this study, full-length genome sequences of EsBV were pursued using next generation sequencing; the genome of EsBV was found to be composed of 6.7 kb L, 3.3 kb M, and 0.8 kb S segments, respectively. PCR detection based genomic sequences showed that the positive rate of EsBV reached 40% in crabs from farming ponds. EsBV had the highest similarity with the Wenling crustacean virus 9, an unassigned, negative sense ssRNA virus. EsBV clustered with the Wenling crustacean virus 9 firstly, and then the branch clustered with Peribunyaviridae clade in every phylogenetic tree - based on L, M and S encoded sequences, respectively, indicating that EsBV can be classified in the family Peribunyaviridae, to which the orthobunyaviruses belongs, but not belonging to any known genera in the family Peribunyaviridae. There were unique complimentary terminal sequences for EsBV, with only partial consensus with members from the orthobunyaviruses. We believe that the findings of this research will be vital for future research about EsBV and will also go a long way in illuminating its relationship with TD. Keywords: Eriocheir sinensis; tremor disease; bunyavirus; EsBV; genome sequences.


Subject(s)
Brachyura , Bunyaviridae , Genome, Viral , Phylogeny , Animals , Brachyura/virology , Bunyaviridae/classification , Bunyaviridae/genetics , China , Fresh Water , Genomics
17.
Sci Rep ; 9(1): 12957, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506463

ABSTRACT

Carcinus maenas is in the top 100 globally invasive species and harbours a wide diversity of pathogens, including viruses. We provide a detailed description for a novel bunyavirus (Carcinus maenas Portunibunyavirus 1) infecting C. maenas from its native range in the Faroe Islands. The virus genome is tripartite, including large (L) (6766 bp), medium (M) (3244 bp) and small (S) (1608 bp) negative sense, single-stranded RNA segments. Individual genomic segments are flanked by 4 bp regions of similarity (CCUG). The segments encode an RNA-dependent RNA-polymerase, glycoprotein, non-structural protein with a Zinc-Finger domain and a nucleoprotein. Most show highest identity to the 'Wenling Crustacean Virus 9' from an unidentified crustacean host. Phylogenomics of crustacean-infecting bunyaviruses place them across multiple bunyavirus families. We discuss the diversity of crustacean bunyaviruses and provide an overview of how these viruses may affect the health and survival of crustacean hosts, including those inhabiting niches outside of their native range.


Subject(s)
Brachyura/virology , Bunyaviridae Infections/virology , Genetic Variation , Genetics, Population , Genome, Viral , Orthobunyavirus/growth & development , Phylogeny , Amino Acid Sequence , Animals , Brachyura/genetics , Bunyaviridae Infections/genetics , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Sequence Homology
18.
Dev Comp Immunol ; 100: 103421, 2019 11.
Article in English | MEDLINE | ID: mdl-31254562

ABSTRACT

White spot syndrome virus (WSSV) is one of the most virulent and widespread pathogens that infect almost all marine crustaceans and therefore cause huge economic losses in aquaculture. The Bcl2 protein plays a key role in the mitochondrial apoptosis pathway, which is a crucial immune response in invertebrates. However, the role of Bcl2 in apoptosis and immunoregulation in mud crab, Scylla paramamosain, is poorly understood. Here, the Bcl2 homolog (SpBcl2) in S. paramamosain was cloned and its role in WSSV infection explored. The expression of SpBcl2 increased at both the transcriptional level and post-transcriptional level after WSSV infection, while the hemocytes apoptosis decreased significantly. Furthermore, there was increase in the level of cytochrome c coupled with an upregulation in the expression of SpBcl2. These results indicated that SpBcl2 suppressed apoptosis by preventing the release of cytochrome c from mitochondria, thereby promoting WSSV replication in mud crab. The findings here therefore provide novel insight into the immune response of mud crabs to WSSV infection.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/immunology , Immunity, Innate , Proto-Oncogene Proteins c-bcl-2/metabolism , White spot syndrome virus 1/immunology , Animals , Apoptosis/immunology , Aquaculture , Arthropod Proteins/immunology , Brachyura/virology , Cytochromes c/immunology , Cytochromes c/metabolism , Disease Resistance/immunology , Gene Expression Profiling , Hemocytes/cytology , Hemocytes/immunology , Hemocytes/pathology , Mitochondria/immunology , Mitochondria/metabolism , Phylogeny , Proto-Oncogene Proteins c-bcl-2/immunology , Up-Regulation/immunology
19.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31068424

ABSTRACT

Most described flaviviruses (family Flaviviridae) are disease-causing pathogens of vertebrates maintained in zoonotic cycles between mosquitoes or ticks and vertebrate hosts. Poor sampling of flaviviruses outside vector-borne flaviviruses such as Zika virus and dengue virus has presented a narrow understanding of flavivirus diversity and evolution. In this study, we discovered three crustacean flaviviruses (Gammarus chevreuxi flavivirus, Gammarus pulex flavivirus, and Crangon crangon flavivirus) and two cephalopod flaviviruses (Southern Pygmy squid flavivirus and Firefly squid flavivirus). Bayesian and maximum likelihood phylogenetic methods demonstrate that crustacean flaviviruses form a well-supported clade and share a more closely related ancestor with terrestrial vector-borne flaviviruses than with classical insect-specific flaviviruses. In addition, we identify variants of Wenzhou shark flavivirus in multiple gazami crab (Portunus trituberculatus) populations, with active replication supported by evidence of an active RNA interference response. This suggests that Wenzhou shark flavivirus moves horizontally between sharks and gazami crabs in ocean ecosystems. Analyses of the mono- and dinucleotide composition of marine flaviviruses compared to that of flaviviruses with known host status suggest that some marine flaviviruses share a nucleotide bias similar to that of vector-borne flaviviruses. Furthermore, we identify crustacean flavivirus endogenous viral elements that are closely related to elements of terrestrial vector-borne flaviviruses. Taken together, these data provide evidence of flaviviruses circulating between marine vertebrates and invertebrates, expand our understanding of flavivirus host range, and offer potential insights into the evolution and emergence of terrestrial vector-borne flaviviruses.IMPORTANCE Some flaviviruses are known to cause disease in vertebrates and are typically transmitted by blood-feeding arthropods such as ticks and mosquitoes. While an ever-increasing number of insect-specific flaviviruses have been described, we have a narrow understanding of flavivirus incidence and evolution. To expand this understanding, we discovered a number of novel flaviviruses that infect a range of crustaceans and cephalopod hosts. Phylogenetic analyses of these novel marine flaviviruses suggest that crustacean flaviviruses share a close ancestor to all terrestrial vector-borne flaviviruses, and squid flaviviruses are the most divergent of all known flaviviruses to date. Additionally, our results indicate horizontal transmission of a marine flavivirus between crabs and sharks. Taken together, these data suggest that flaviviruses move horizontally between invertebrates and vertebrates in ocean ecosystems. This study demonstrates that flavivirus invertebrate-vertebrate host associations have arisen in flaviviruses at least twice and may potentially provide insights into the emergence or origin of terrestrial vector-borne flaviviruses.


Subject(s)
Aquatic Organisms/virology , Biological Evolution , Brachyura/virology , Cephalopoda/virology , Fish Diseases , Flavivirus Infections , Flavivirus , Sharks/virology , Animals , Disease Transmission, Infectious , Fish Diseases/transmission , Fish Diseases/virology , Flavivirus/classification , Flavivirus/physiology , Flavivirus Infections/transmission , Flavivirus Infections/virology
20.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30651355

ABSTRACT

Viruses associated with sleeping disease (SD) in crabs cause great economic losses to aquaculture, and no effective measures are available for their prevention. In this study, to help develop novel antiviral strategies, single-particle cryo-electron microscopy was applied to investigate viruses associated with SD. The results not only revealed the structure of mud crab dicistrovirus (MCDV) but also identified a novel mud crab tombus-like virus (MCTV) not previously detected using molecular biology methods. The structure of MCDV at a 3.5-Å resolution reveals three major capsid proteins (VP1 to VP3) organized into a pseudo-T=3 icosahedral capsid, and affirms the existence of VP4. Unusually, MCDV VP3 contains a long C-terminal region and forms a novel protrusion that has not been observed in other dicistrovirus. Our results also reveal that MCDV can release its genome via conformation changes of the protrusions when viral mixtures are heated. The structure of MCTV at a 3.3-Å resolution reveals a T= 3 icosahedral capsid with common features of both tombusviruses and nodaviruses. Furthermore, MCTV has a novel hydrophobic tunnel beneath the 5-fold vertex and 30 dimeric protrusions composed of the P-domains of the capsid protein at the 2-fold axes that are exposed on the virion surface. The structural features of MCTV are consistent with a novel type of virus.IMPORTANCE Pathogen identification is vital for unknown infectious outbreaks, especially for dual or multiple infections. Sleeping disease (SD) in crabs causes great economic losses to aquaculture worldwide. Here we report the discovery and identification of a novel virus in mud crabs with multiple infections that was not previously detected by molecular, immune, or traditional electron microscopy (EM) methods. High-resolution structures of pathogenic viruses are essential for a molecular understanding and developing new disease prevention methods. The three-dimensional (3D) structure of the mud crab tombus-like virus (MCTV) and mud crab dicistrovirus (MCDV) determined in this study could assist the development of antiviral inhibitors. The identification of a novel virus in multiple infections previously missed using other methods demonstrates the usefulness of this strategy for investigating multiple infectious outbreaks, even in humans and other animals.


Subject(s)
Brachyura/virology , Dicistroviridae/physiology , Animals , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Dicistroviridae/metabolism , Viral Structural Proteins/metabolism , Virion/metabolism , Virion/physiology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...